32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
|
import os
|
||
|
import glob
|
||
|
from pathlib import Path
|
||
|
import pandas as pd
|
||
|
import time
|
||
|
from datetime import datetime
|
||
|
|
||
|
csv_dir = "/home/hoernschen/cloud/Studium/Master/Masterthesis/Messungen/"
|
||
|
output_dir = "/home/hoernschen/workspace/python/MeasurementConverter/"
|
||
|
|
||
|
def format_timestamp(ts):
|
||
|
time_string = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(ts)))
|
||
|
#time = datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
|
||
|
time_string = time_string + "." + str(int(ts)%1000).zfill(3)
|
||
|
return time_string
|
||
|
|
||
|
measurement_files = Path(csv_dir).rglob('*.csv')
|
||
|
|
||
|
for measurement_file in measurement_files:
|
||
|
if "Messung" or "Network" in measurement_file.name:
|
||
|
continue
|
||
|
print(measurement_file.name)
|
||
|
csv_data = pd.read_csv(measurement_file.absolute())
|
||
|
new_csv_data = []
|
||
|
for data in csv_data.to_numpy():
|
||
|
new_csv_data.append([format_timestamp(data[1]),"startTestrun"])
|
||
|
new_csv_data.append([format_timestamp(data[2]),"stopTestrun"])
|
||
|
|
||
|
new_csv = pd.DataFrame(new_csv_data)
|
||
|
new_csv.to_csv(output_dir + measurement_file.name,header=False, index=False)
|
||
|
|