// Copyright 2017 Vector Creations Ltd // Copyright 2018 New Vector Ltd // Copyright 2019-2020 The Matrix.org Foundation C.I.C. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package state import ( "context" "fmt" "sort" "time" "github.com/matrix-org/dendrite/roomserver/storage" "github.com/matrix-org/util" "github.com/prometheus/client_golang/prometheus" "github.com/matrix-org/dendrite/roomserver/types" "github.com/matrix-org/gomatrixserverlib" ) type StateResolution struct { db storage.Database roomInfo types.RoomInfo } func NewStateResolution(db storage.Database, roomInfo types.RoomInfo) StateResolution { return StateResolution{ db: db, roomInfo: roomInfo, } } // LoadStateAtSnapshot loads the full state of a room at a particular snapshot. // This is typically the state before an event or the current state of a room. // Returns a sorted list of state entries or an error if there was a problem talking to the database. func (v StateResolution) LoadStateAtSnapshot( ctx context.Context, stateNID types.StateSnapshotNID, ) ([]types.StateEntry, error) { stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID}) if err != nil { return nil, err } // We've asked for exactly one snapshot from the db so we should have exactly one entry in the result. stateBlockNIDList := stateBlockNIDLists[0] stateEntryLists, err := v.db.StateEntries(ctx, stateBlockNIDList.StateBlockNIDs) if err != nil { return nil, err } stateEntriesMap := stateEntryListMap(stateEntryLists) // Combine all the state entries for this snapshot. // The order of state block NIDs in the list tells us the order to combine them in. var fullState []types.StateEntry for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs { entries, ok := stateEntriesMap.lookup(stateBlockNID) if !ok { // This should only get hit if the database is corrupt. // It should be impossible for an event to reference a NID that doesn't exist panic(fmt.Errorf("Corrupt DB: Missing state block numeric ID %d", stateBlockNID)) } fullState = append(fullState, entries...) } // Stable sort so that the most recent entry for each state key stays // remains later in the list than the older entries for the same state key. sort.Stable(stateEntryByStateKeySorter(fullState)) // Unique returns the last entry and hence the most recent entry for each state key. fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))] return fullState, nil } // LoadStateAtEvent loads the full state of a room before a particular event. func (v StateResolution) LoadStateAtEvent( ctx context.Context, eventID string, ) ([]types.StateEntry, error) { stateAtEvents, err := v.db.StateAtEventIDs(ctx, []string{eventID}) if err != nil { return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID failed for event %s : %s", eventID, err) } if len(stateAtEvents) == 0 || stateAtEvents[0].BeforeStateSnapshotNID == 0 { return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID(%s) returned 0 NID, was this event stored?", eventID) } stateEntries, err := v.LoadStateAtSnapshot(ctx, stateAtEvents[0].BeforeStateSnapshotNID) if err != nil { return nil, err } return stateEntries, nil } // LoadCombinedStateAfterEvents loads a snapshot of the state after each of the events // and combines those snapshots together into a single list. At this point it is // possible to run into duplicate (type, state key) tuples. func (v StateResolution) LoadCombinedStateAfterEvents( ctx context.Context, prevStates []types.StateAtEvent, ) ([]types.StateEntry, error) { stateNIDs := make([]types.StateSnapshotNID, len(prevStates)) for i, state := range prevStates { stateNIDs[i] = state.BeforeStateSnapshotNID } // Fetch the state snapshots for the state before the each prev event from the database. // Deduplicate the IDs before passing them to the database. // There could be duplicates because the events could be state events where // the snapshot of the room state before them was the same. stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, uniqueStateSnapshotNIDs(stateNIDs)) if err != nil { return nil, err } var stateBlockNIDs []types.StateBlockNID for _, list := range stateBlockNIDLists { stateBlockNIDs = append(stateBlockNIDs, list.StateBlockNIDs...) } // Fetch the state entries that will be combined to create the snapshots. // Deduplicate the IDs before passing them to the database. // There could be duplicates because a block of state entries could be reused by // multiple snapshots. stateEntryLists, err := v.db.StateEntries(ctx, uniqueStateBlockNIDs(stateBlockNIDs)) if err != nil { return nil, err } stateBlockNIDsMap := stateBlockNIDListMap(stateBlockNIDLists) stateEntriesMap := stateEntryListMap(stateEntryLists) // Combine the entries from all the snapshots of state after each prev event into a single list. var combined []types.StateEntry for _, prevState := range prevStates { // Grab the list of state data NIDs for this snapshot. stateBlockNIDs, ok := stateBlockNIDsMap.lookup(prevState.BeforeStateSnapshotNID) if !ok { // This should only get hit if the database is corrupt. // It should be impossible for an event to reference a NID that doesn't exist panic(fmt.Errorf("Corrupt DB: Missing state snapshot numeric ID %d", prevState.BeforeStateSnapshotNID)) } // Combine all the state entries for this snapshot. // The order of state block NIDs in the list tells us the order to combine them in. var fullState []types.StateEntry for _, stateBlockNID := range stateBlockNIDs { entries, ok := stateEntriesMap.lookup(stateBlockNID) if !ok { // This should only get hit if the database is corrupt. // It should be impossible for an event to reference a NID that doesn't exist panic(fmt.Errorf("Corrupt DB: Missing state block numeric ID %d", stateBlockNID)) } fullState = append(fullState, entries...) } if prevState.IsStateEvent() { // If the prev event was a state event then add an entry for the event itself // so that we get the state after the event rather than the state before. fullState = append(fullState, prevState.StateEntry) } // Stable sort so that the most recent entry for each state key stays // remains later in the list than the older entries for the same state key. sort.Stable(stateEntryByStateKeySorter(fullState)) // Unique returns the last entry and hence the most recent entry for each state key. fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))] // Add the full state for this StateSnapshotNID. combined = append(combined, fullState...) } return combined, nil } // DifferenceBetweeenStateSnapshots works out which state entries have been added and removed between two snapshots. func (v StateResolution) DifferenceBetweeenStateSnapshots( ctx context.Context, oldStateNID, newStateNID types.StateSnapshotNID, ) (removed, added []types.StateEntry, err error) { if oldStateNID == newStateNID { // If the snapshot NIDs are the same then nothing has changed return nil, nil, nil } var oldEntries []types.StateEntry var newEntries []types.StateEntry if oldStateNID != 0 { oldEntries, err = v.LoadStateAtSnapshot(ctx, oldStateNID) if err != nil { return nil, nil, err } } if newStateNID != 0 { newEntries, err = v.LoadStateAtSnapshot(ctx, newStateNID) if err != nil { return nil, nil, err } } var oldI int var newI int for { switch { case oldI == len(oldEntries): // We've reached the end of the old entries. // The rest of the new list must have been newly added. added = append(added, newEntries[newI:]...) return case newI == len(newEntries): // We've reached the end of the new entries. // The rest of the old list must be have been removed. removed = append(removed, oldEntries[oldI:]...) return case oldEntries[oldI] == newEntries[newI]: // The entry is in both lists so skip over it. oldI++ newI++ case oldEntries[oldI].LessThan(newEntries[newI]): // The lists are sorted so the old entry being less than the new entry means that it only appears in the old list. removed = append(removed, oldEntries[oldI]) oldI++ default: // Reaching the default case implies that the new entry is less than the old entry. // Since the lists are sorted this means that it only appears in the new list. added = append(added, newEntries[newI]) newI++ } } } // LoadStateAtSnapshotForStringTuples loads the state for a list of event type and state key pairs at a snapshot. // This is used when we only want to load a subset of the room state at a snapshot. // If there is no entry for a given event type and state key pair then it will be discarded. // This is typically the state before an event or the current state of a room. // Returns a sorted list of state entries or an error if there was a problem talking to the database. func (v StateResolution) LoadStateAtSnapshotForStringTuples( ctx context.Context, stateNID types.StateSnapshotNID, stateKeyTuples []gomatrixserverlib.StateKeyTuple, ) ([]types.StateEntry, error) { numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples) if err != nil { return nil, err } return v.loadStateAtSnapshotForNumericTuples(ctx, stateNID, numericTuples) } // stringTuplesToNumericTuples converts the string state key tuples into numeric IDs // If there isn't a numeric ID for either the event type or the event state key then the tuple is discarded. // Returns an error if there was a problem talking to the database. func (v StateResolution) stringTuplesToNumericTuples( ctx context.Context, stringTuples []gomatrixserverlib.StateKeyTuple, ) ([]types.StateKeyTuple, error) { eventTypes := make([]string, len(stringTuples)) stateKeys := make([]string, len(stringTuples)) for i := range stringTuples { eventTypes[i] = stringTuples[i].EventType stateKeys[i] = stringTuples[i].StateKey } eventTypes = util.UniqueStrings(eventTypes) eventTypeMap, err := v.db.EventTypeNIDs(ctx, eventTypes) if err != nil { return nil, err } stateKeys = util.UniqueStrings(stateKeys) stateKeyMap, err := v.db.EventStateKeyNIDs(ctx, stateKeys) if err != nil { return nil, err } var result []types.StateKeyTuple for _, stringTuple := range stringTuples { var numericTuple types.StateKeyTuple var ok1, ok2 bool numericTuple.EventTypeNID, ok1 = eventTypeMap[stringTuple.EventType] numericTuple.EventStateKeyNID, ok2 = stateKeyMap[stringTuple.StateKey] // Discard the tuple if there wasn't a numeric ID for either the event type or the state key. if ok1 && ok2 { result = append(result, numericTuple) } } return result, nil } // loadStateAtSnapshotForNumericTuples loads the state for a list of event type and state key pairs at a snapshot. // This is used when we only want to load a subset of the room state at a snapshot. // If there is no entry for a given event type and state key pair then it will be discarded. // This is typically the state before an event or the current state of a room. // Returns a sorted list of state entries or an error if there was a problem talking to the database. func (v StateResolution) loadStateAtSnapshotForNumericTuples( ctx context.Context, stateNID types.StateSnapshotNID, stateKeyTuples []types.StateKeyTuple, ) ([]types.StateEntry, error) { stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID}) if err != nil { return nil, err } // We've asked for exactly one snapshot from the db so we should have exactly one entry in the result. stateBlockNIDList := stateBlockNIDLists[0] stateEntryLists, err := v.db.StateEntriesForTuples( ctx, stateBlockNIDList.StateBlockNIDs, stateKeyTuples, ) if err != nil { return nil, err } stateEntriesMap := stateEntryListMap(stateEntryLists) // Combine all the state entries for this snapshot. // The order of state block NIDs in the list tells us the order to combine them in. var fullState []types.StateEntry for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs { entries, ok := stateEntriesMap.lookup(stateBlockNID) if !ok { // If the block is missing from the map it means that none of its entries matched a requested tuple. // This can happen if the block doesn't contain an update for one of the requested tuples. // If none of the requested tuples are in the block then it can be safely skipped. continue } fullState = append(fullState, entries...) } // Stable sort so that the most recent entry for each state key stays // remains later in the list than the older entries for the same state key. sort.Stable(stateEntryByStateKeySorter(fullState)) // Unique returns the last entry and hence the most recent entry for each state key. fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))] return fullState, nil } // LoadStateAfterEventsForStringTuples loads the state for a list of event type // and state key pairs after list of events. // This is used when we only want to load a subset of the room state after a list of events. // If there is no entry for a given event type and state key pair then it will be discarded. // This is typically the state before an event. // Returns a sorted list of state entries or an error if there was a problem talking to the database. func (v StateResolution) LoadStateAfterEventsForStringTuples( ctx context.Context, prevStates []types.StateAtEvent, stateKeyTuples []gomatrixserverlib.StateKeyTuple, ) ([]types.StateEntry, error) { numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples) if err != nil { return nil, err } return v.loadStateAfterEventsForNumericTuples(ctx, prevStates, numericTuples) } func (v StateResolution) loadStateAfterEventsForNumericTuples( ctx context.Context, prevStates []types.StateAtEvent, stateKeyTuples []types.StateKeyTuple, ) ([]types.StateEntry, error) { if len(prevStates) == 1 { // Fast path for a single event. prevState := prevStates[0] result, err := v.loadStateAtSnapshotForNumericTuples( ctx, prevState.BeforeStateSnapshotNID, stateKeyTuples, ) if err != nil { return nil, err } if prevState.IsStateEvent() { // The result is current the state before the requested event. // We want the state after the requested event. // If the requested event was a state event then we need to // update that key in the result. // If the requested event wasn't a state event then the state after // it is the same as the state before it. set := false for i := range result { if result[i].StateKeyTuple == prevState.StateKeyTuple { result[i] = prevState.StateEntry set = true } } if !set { // no previous state exists for this event: add new state result = append(result, prevState.StateEntry) } } return result, nil } // Slow path for more that one event. // Load the entire state so that we can do conflict resolution if we need to. // TODO: The are some optimistations we could do here: // 1) We only need to do conflict resolution if there is a conflict in the // requested tuples so we might try loading just those tuples and then // checking for conflicts. // 2) When there is a conflict we still only need to load the state // needed to do conflict resolution which would save us having to load // the full state. // TODO: Add metrics for this as it could take a long time for big rooms // with large conflicts. fullState, _, _, err := v.calculateStateAfterManyEvents(ctx, v.roomInfo.RoomVersion, prevStates) if err != nil { return nil, err } // Sort the full state so we can use it as a map. sort.Sort(stateEntrySorter(fullState)) // Filter the full state down to the required tuples. var result []types.StateEntry for _, tuple := range stateKeyTuples { eventNID, ok := stateEntryMap(fullState).lookup(tuple) if ok { result = append(result, types.StateEntry{ StateKeyTuple: tuple, EventNID: eventNID, }) } } sort.Sort(stateEntrySorter(result)) return result, nil } var calculateStateDurations = prometheus.NewSummaryVec( prometheus.SummaryOpts{ Namespace: "dendrite", Subsystem: "roomserver", Name: "calculate_state_duration_microseconds", Help: "How long it takes to calculate the state after a list of events", }, // Takes two labels: // algorithm: // The algorithm used to calculate the state or the step it failed on if it failed. // Labels starting with "_" are used to indicate when the algorithm fails halfway. // outcome: // Whether the state was successfully calculated. // // The possible values for algorithm are: // empty_state -> The list of events was empty so the state is empty. // no_change -> The state hasn't changed. // single_delta -> There was a single event added to the state in a way that can be encoded as a single delta // full_state_no_conflicts -> We created a new copy of the full room state, but didn't enounter any conflicts // while doing so. // full_state_with_conflicts -> We created a new copy of the full room state and had to resolve conflicts to do so. // _load_state_block_nids -> Failed loading the state block nids for a single previous state. // _load_combined_state -> Failed to load the combined state. // _resolve_conflicts -> Failed to resolve conflicts. []string{"algorithm", "outcome"}, ) var calculateStatePrevEventLength = prometheus.NewSummaryVec( prometheus.SummaryOpts{ Namespace: "dendrite", Subsystem: "roomserver", Name: "calculate_state_prev_event_length", Help: "The length of the list of events to calculate the state after", }, []string{"algorithm", "outcome"}, ) var calculateStateFullStateLength = prometheus.NewSummaryVec( prometheus.SummaryOpts{ Namespace: "dendrite", Subsystem: "roomserver", Name: "calculate_state_full_state_length", Help: "The length of the full room state.", }, []string{"algorithm", "outcome"}, ) var calculateStateConflictLength = prometheus.NewSummaryVec( prometheus.SummaryOpts{ Namespace: "dendrite", Subsystem: "roomserver", Name: "calculate_state_conflict_state_length", Help: "The length of the conflicted room state.", }, []string{"algorithm", "outcome"}, ) type calculateStateMetrics struct { algorithm string startTime time.Time prevEventLength int fullStateLength int conflictLength int } func (c *calculateStateMetrics) stop(stateNID types.StateSnapshotNID, err error) (types.StateSnapshotNID, error) { var outcome string if err == nil { outcome = "success" } else { outcome = "failure" } endTime := time.Now() calculateStateDurations.WithLabelValues(c.algorithm, outcome).Observe( float64(endTime.Sub(c.startTime).Nanoseconds()) / 1000., ) calculateStatePrevEventLength.WithLabelValues(c.algorithm, outcome).Observe( float64(c.prevEventLength), ) calculateStateFullStateLength.WithLabelValues(c.algorithm, outcome).Observe( float64(c.fullStateLength), ) calculateStateConflictLength.WithLabelValues(c.algorithm, outcome).Observe( float64(c.conflictLength), ) return stateNID, err } func init() { prometheus.MustRegister( calculateStateDurations, calculateStatePrevEventLength, calculateStateFullStateLength, calculateStateConflictLength, ) } // CalculateAndStoreStateBeforeEvent calculates a snapshot of the state of a room before an event. // Stores the snapshot of the state in the database. // Returns a numeric ID for the snapshot of the state before the event. func (v StateResolution) CalculateAndStoreStateBeforeEvent( ctx context.Context, event gomatrixserverlib.Event, ) (types.StateSnapshotNID, error) { // Load the state at the prev events. prevEventRefs := event.PrevEvents() prevEventIDs := make([]string, len(prevEventRefs)) for i := range prevEventRefs { prevEventIDs[i] = prevEventRefs[i].EventID } prevStates, err := v.db.StateAtEventIDs(ctx, prevEventIDs) if err != nil { return 0, err } // The state before this event will be the state after the events that came before it. return v.CalculateAndStoreStateAfterEvents(ctx, prevStates) } // CalculateAndStoreStateAfterEvents finds the room state after the given events. // Stores the resulting state in the database and returns a numeric ID for that snapshot. func (v StateResolution) CalculateAndStoreStateAfterEvents( ctx context.Context, prevStates []types.StateAtEvent, ) (types.StateSnapshotNID, error) { metrics := calculateStateMetrics{startTime: time.Now(), prevEventLength: len(prevStates)} if len(prevStates) == 0 { // 2) There weren't any prev_events for this event so the state is // empty. metrics.algorithm = "empty_state" stateNID, err := v.db.AddState(ctx, v.roomInfo.RoomNID, nil, nil) if err != nil { err = fmt.Errorf("v.db.AddState: %w", err) } return metrics.stop(stateNID, err) } if len(prevStates) == 1 { prevState := prevStates[0] if prevState.EventStateKeyNID == 0 { // 3) None of the previous events were state events and they all // have the same state, so this event has exactly the same state // as the previous events. // This should be the internal case. metrics.algorithm = "no_change" return metrics.stop(prevState.BeforeStateSnapshotNID, nil) } // The previous event was a state event so we need to store a copy // of the previous state updated with that event. stateBlockNIDLists, err := v.db.StateBlockNIDs( ctx, []types.StateSnapshotNID{prevState.BeforeStateSnapshotNID}, ) if err != nil { metrics.algorithm = "_load_state_blocks" return metrics.stop(0, fmt.Errorf("v.db.StateBlockNIDs: %w", err)) } stateBlockNIDs := stateBlockNIDLists[0].StateBlockNIDs if len(stateBlockNIDs) < maxStateBlockNIDs { // 4) The number of state data blocks is small enough that we can just // add the state event as a block of size one to the end of the blocks. metrics.algorithm = "single_delta" stateNID, err := v.db.AddState( ctx, v.roomInfo.RoomNID, stateBlockNIDs, []types.StateEntry{prevState.StateEntry}, ) if err != nil { err = fmt.Errorf("v.db.AddState: %w", err) } return metrics.stop(stateNID, err) } // If there are too many deltas then we need to calculate the full state // So fall through to calculateAndStoreStateAfterManyEvents } stateNID, err := v.calculateAndStoreStateAfterManyEvents(ctx, v.roomInfo.RoomNID, prevStates, metrics) if err != nil { return 0, fmt.Errorf("v.calculateAndStoreStateAfterManyEvents: %w", err) } return stateNID, nil } // maxStateBlockNIDs is the maximum number of state data blocks to use to encode a snapshot of room state. // Increasing this number means that we can encode more of the state changes as simple deltas which means that // we need fewer entries in the state data table. However making this number bigger will increase the size of // the rows in the state table itself and will require more index lookups when retrieving a snapshot. // TODO: Tune this to get the right balance between size and lookup performance. const maxStateBlockNIDs = 64 // calculateAndStoreStateAfterManyEvents finds the room state after the given events. // This handles the slow path of calculateAndStoreStateAfterEvents for when there is more than one event. // Stores the resulting state and returns a numeric ID for the snapshot. func (v StateResolution) calculateAndStoreStateAfterManyEvents( ctx context.Context, roomNID types.RoomNID, prevStates []types.StateAtEvent, metrics calculateStateMetrics, ) (types.StateSnapshotNID, error) { state, algorithm, conflictLength, err := v.calculateStateAfterManyEvents(ctx, v.roomInfo.RoomVersion, prevStates) metrics.algorithm = algorithm if err != nil { return metrics.stop(0, err) } // TODO: Check if we can encode the new state as a delta against the // previous state. metrics.conflictLength = conflictLength metrics.fullStateLength = len(state) return metrics.stop(v.db.AddState(ctx, roomNID, nil, state)) } func (v StateResolution) calculateStateAfterManyEvents( ctx context.Context, roomVersion gomatrixserverlib.RoomVersion, prevStates []types.StateAtEvent, ) (state []types.StateEntry, algorithm string, conflictLength int, err error) { var combined []types.StateEntry // Conflict resolution. // First stage: load the state after each of the prev events. combined, err = v.LoadCombinedStateAfterEvents(ctx, prevStates) if err != nil { algorithm = "_load_combined_state" return } // Collect all the entries with the same type and key together. // We don't care about the order here because the conflict resolution // algorithm doesn't depend on the order of the prev events. // Remove duplicate entires. combined = combined[:util.SortAndUnique(stateEntrySorter(combined))] // Find the conflicts conflicts := findDuplicateStateKeys(combined) if len(conflicts) > 0 { conflictLength = len(conflicts) // 5) There are conflicting state events, for each conflict workout // what the appropriate state event is. // Work out which entries aren't conflicted. var notConflicted []types.StateEntry for _, entry := range combined { if _, ok := stateEntryMap(conflicts).lookup(entry.StateKeyTuple); !ok { notConflicted = append(notConflicted, entry) } } var resolved []types.StateEntry resolved, err = v.resolveConflicts(ctx, roomVersion, notConflicted, conflicts) if err != nil { algorithm = "_resolve_conflicts" return } algorithm = "full_state_with_conflicts" state = resolved[:util.SortAndUnique(stateEntrySorter(resolved))] } else { algorithm = "full_state_no_conflicts" // 6) There weren't any conflicts state = combined } return } // ResolveConflictsAdhoc is a helper function to assist the query API in // performing state resolution when requested. This is a different code // path to the rest of state.go because this assumes you already have // gomatrixserverlib.Event objects and not just a bunch of NIDs like // elsewhere in the state resolution. // TODO: Some of this can possibly be deduplicated func ResolveConflictsAdhoc( version gomatrixserverlib.RoomVersion, events []gomatrixserverlib.Event, authEvents []gomatrixserverlib.Event, ) ([]gomatrixserverlib.Event, error) { type stateKeyTuple struct { Type string StateKey string } // Prepare our data structures. eventMap := make(map[stateKeyTuple][]gomatrixserverlib.Event) var conflicted, notConflicted, resolved []gomatrixserverlib.Event // Run through all of the events that we were given and sort them // into a map, sorted by (event_type, state_key) tuple. This means // that we can easily spot events that are "conflicted", e.g. // there are duplicate values for the same tuple key. for _, event := range events { if event.StateKey() == nil { // Ignore events that are not state events. continue } // Append the events if there is already a conflicted list for // this tuple key, create it if not. tuple := stateKeyTuple{event.Type(), *event.StateKey()} if _, ok := eventMap[tuple]; ok { eventMap[tuple] = append(eventMap[tuple], event) } else { eventMap[tuple] = []gomatrixserverlib.Event{event} } } // Split out the events in the map into conflicted and unconflicted // buckets. The conflicted events will be ran through state res, // whereas unconfliced events will always going to appear in the // final resolved state. for _, list := range eventMap { if len(list) > 1 { conflicted = append(conflicted, list...) } else { notConflicted = append(notConflicted, list...) } } // Work out which state resolution algorithm we want to run for // the room version. stateResAlgo, err := version.StateResAlgorithm() if err != nil { return nil, err } switch stateResAlgo { case gomatrixserverlib.StateResV1: // Currently state res v1 doesn't handle unconflicted events // for us, like state res v2 does, so we will need to add the // unconflicted events into the state ourselves. // TODO: Fix state res v1 so this is handled for the caller. resolved = gomatrixserverlib.ResolveStateConflicts(conflicted, authEvents) resolved = append(resolved, notConflicted...) case gomatrixserverlib.StateResV2: // TODO: auth difference here? resolved = gomatrixserverlib.ResolveStateConflictsV2(conflicted, notConflicted, authEvents, authEvents) default: return nil, fmt.Errorf("unsupported state resolution algorithm %v", stateResAlgo) } // Return the final resolved state events, including both the // resolved set of conflicted events, and the unconflicted events. return resolved, nil } func (v StateResolution) resolveConflicts( ctx context.Context, version gomatrixserverlib.RoomVersion, notConflicted, conflicted []types.StateEntry, ) ([]types.StateEntry, error) { stateResAlgo, err := version.StateResAlgorithm() if err != nil { return nil, err } switch stateResAlgo { case gomatrixserverlib.StateResV1: return v.resolveConflictsV1(ctx, notConflicted, conflicted) case gomatrixserverlib.StateResV2: return v.resolveConflictsV2(ctx, notConflicted, conflicted) } return nil, fmt.Errorf("unsupported state resolution algorithm %v", stateResAlgo) } // resolveConflicts resolves a list of conflicted state entries. It takes two lists. // The first is a list of all state entries that are not conflicted. // The second is a list of all state entries that are conflicted // A state entry is conflicted when there is more than one numeric event ID for the same state key tuple. // Returns a list that combines the entries without conflicts with the result of state resolution for the entries with conflicts. // The returned list is sorted by state key tuple. // Returns an error if there was a problem talking to the database. func (v StateResolution) resolveConflictsV1( ctx context.Context, notConflicted, conflicted []types.StateEntry, ) ([]types.StateEntry, error) { // Load the conflicted events conflictedEvents, eventIDMap, err := v.loadStateEvents(ctx, conflicted) if err != nil { return nil, err } // Work out which auth events we need to load. needed := gomatrixserverlib.StateNeededForAuth(conflictedEvents) // Find the numeric IDs for the necessary state keys. var neededStateKeys []string neededStateKeys = append(neededStateKeys, needed.Member...) neededStateKeys = append(neededStateKeys, needed.ThirdPartyInvite...) stateKeyNIDMap, err := v.db.EventStateKeyNIDs(ctx, neededStateKeys) if err != nil { return nil, err } // Load the necessary auth events. tuplesNeeded := v.stateKeyTuplesNeeded(stateKeyNIDMap, needed) var authEntries []types.StateEntry for _, tuple := range tuplesNeeded { if eventNID, ok := stateEntryMap(notConflicted).lookup(tuple); ok { authEntries = append(authEntries, types.StateEntry{ StateKeyTuple: tuple, EventNID: eventNID, }) } } authEvents, _, err := v.loadStateEvents(ctx, authEntries) if err != nil { return nil, err } // Resolve the conflicts. resolvedEvents := gomatrixserverlib.ResolveStateConflicts(conflictedEvents, authEvents) // Map from the full events back to numeric state entries. for _, resolvedEvent := range resolvedEvents { entry, ok := eventIDMap[resolvedEvent.EventID()] if !ok { panic(fmt.Errorf("Missing state entry for event ID %q", resolvedEvent.EventID())) } notConflicted = append(notConflicted, entry) } // Sort the result so it can be searched. sort.Sort(stateEntrySorter(notConflicted)) return notConflicted, nil } // resolveConflicts resolves a list of conflicted state entries. It takes two lists. // The first is a list of all state entries that are not conflicted. // The second is a list of all state entries that are conflicted // A state entry is conflicted when there is more than one numeric event ID for the same state key tuple. // Returns a list that combines the entries without conflicts with the result of state resolution for the entries with conflicts. // The returned list is sorted by state key tuple. // Returns an error if there was a problem talking to the database. // nolint:gocyclo func (v StateResolution) resolveConflictsV2( ctx context.Context, notConflicted, conflicted []types.StateEntry, ) ([]types.StateEntry, error) { eventIDMap := make(map[string]types.StateEntry) // Load the conflicted events conflictedEvents, conflictedEventMap, err := v.loadStateEvents(ctx, conflicted) if err != nil { return nil, err } for k, v := range conflictedEventMap { eventIDMap[k] = v } // Load the non-conflicted events nonConflictedEvents, nonConflictedEventMap, err := v.loadStateEvents(ctx, notConflicted) if err != nil { return nil, err } for k, v := range nonConflictedEventMap { eventIDMap[k] = v } // For each conflicted event, we will add a new set of auth events. Auth // events may be duplicated across these sets but that's OK. authSets := make(map[string][]gomatrixserverlib.Event) var authEvents []gomatrixserverlib.Event var authDifference []gomatrixserverlib.Event // For each conflicted event, let's try and get the needed auth events. for _, conflictedEvent := range conflictedEvents { // Work out which auth events we need to load. key := conflictedEvent.EventID() needed := gomatrixserverlib.StateNeededForAuth([]gomatrixserverlib.Event{conflictedEvent}) // Find the numeric IDs for the necessary state keys. var neededStateKeys []string neededStateKeys = append(neededStateKeys, needed.Member...) neededStateKeys = append(neededStateKeys, needed.ThirdPartyInvite...) stateKeyNIDMap, err := v.db.EventStateKeyNIDs(ctx, neededStateKeys) if err != nil { return nil, err } // Load the necessary auth events. tuplesNeeded := v.stateKeyTuplesNeeded(stateKeyNIDMap, needed) var authEntries []types.StateEntry for _, tuple := range tuplesNeeded { if eventNID, ok := stateEntryMap(notConflicted).lookup(tuple); ok { authEntries = append(authEntries, types.StateEntry{ StateKeyTuple: tuple, EventNID: eventNID, }) } } // Store the newly found auth events in the auth set for this event. authSets[key], _, err = v.loadStateEvents(ctx, authEntries) if err != nil { return nil, err } authEvents = append(authEvents, authSets[key]...) } // This function helps us to work out whether an event exists in one of the // auth sets. isInAuthList := func(k string, event gomatrixserverlib.Event) bool { for _, e := range authSets[k] { if e.EventID() == event.EventID() { return true } } return false } // This function works out if an event exists in all of the auth sets. isInAllAuthLists := func(event gomatrixserverlib.Event) bool { found := true for k := range authSets { found = found && isInAuthList(k, event) } return found } // Look through all of the auth events that we've been given and work out if // there are any events which don't appear in all of the auth sets. If they // don't then we add them to the auth difference. for _, event := range authEvents { if !isInAllAuthLists(event) { authDifference = append(authDifference, event) } } // Resolve the conflicts. resolvedEvents := gomatrixserverlib.ResolveStateConflictsV2( conflictedEvents, nonConflictedEvents, authEvents, authDifference, ) // Map from the full events back to numeric state entries. for _, resolvedEvent := range resolvedEvents { entry, ok := eventIDMap[resolvedEvent.EventID()] if !ok { panic(fmt.Errorf("Missing state entry for event ID %q", resolvedEvent.EventID())) } notConflicted = append(notConflicted, entry) } // Sort the result so it can be searched. sort.Sort(stateEntrySorter(notConflicted)) return notConflicted, nil } // stateKeyTuplesNeeded works out which numeric state key tuples we need to authenticate some events. func (v StateResolution) stateKeyTuplesNeeded(stateKeyNIDMap map[string]types.EventStateKeyNID, stateNeeded gomatrixserverlib.StateNeeded) []types.StateKeyTuple { var keyTuples []types.StateKeyTuple if stateNeeded.Create { keyTuples = append(keyTuples, types.StateKeyTuple{ EventTypeNID: types.MRoomCreateNID, EventStateKeyNID: types.EmptyStateKeyNID, }) } if stateNeeded.PowerLevels { keyTuples = append(keyTuples, types.StateKeyTuple{ EventTypeNID: types.MRoomPowerLevelsNID, EventStateKeyNID: types.EmptyStateKeyNID, }) } if stateNeeded.JoinRules { keyTuples = append(keyTuples, types.StateKeyTuple{ EventTypeNID: types.MRoomJoinRulesNID, EventStateKeyNID: types.EmptyStateKeyNID, }) } for _, member := range stateNeeded.Member { stateKeyNID, ok := stateKeyNIDMap[member] if ok { keyTuples = append(keyTuples, types.StateKeyTuple{ EventTypeNID: types.MRoomMemberNID, EventStateKeyNID: stateKeyNID, }) } } for _, token := range stateNeeded.ThirdPartyInvite { stateKeyNID, ok := stateKeyNIDMap[token] if ok { keyTuples = append(keyTuples, types.StateKeyTuple{ EventTypeNID: types.MRoomThirdPartyInviteNID, EventStateKeyNID: stateKeyNID, }) } } return keyTuples } // loadStateEvents loads the matrix events for a list of state entries. // Returns a list of state events in no particular order and a map from string event ID back to state entry. // The map can be used to recover which numeric state entry a given event is for. // Returns an error if there was a problem talking to the database. func (v StateResolution) loadStateEvents( ctx context.Context, entries []types.StateEntry, ) ([]gomatrixserverlib.Event, map[string]types.StateEntry, error) { eventNIDs := make([]types.EventNID, len(entries)) for i := range entries { eventNIDs[i] = entries[i].EventNID } events, err := v.db.Events(ctx, eventNIDs) if err != nil { return nil, nil, err } eventIDMap := map[string]types.StateEntry{} result := make([]gomatrixserverlib.Event, len(entries)) for i := range entries { event, ok := eventMap(events).lookup(entries[i].EventNID) if !ok { panic(fmt.Errorf("Corrupt DB: Missing event numeric ID %d", entries[i].EventNID)) } result[i] = event.Event eventIDMap[event.Event.EventID()] = entries[i] } return result, eventIDMap, nil } // findDuplicateStateKeys finds the state entries where the state key tuple appears more than once in a sorted list. // Returns a sorted list of those state entries. func findDuplicateStateKeys(a []types.StateEntry) []types.StateEntry { var result []types.StateEntry // j is the starting index of a block of entries with the same state key tuple. j := 0 for i := 1; i < len(a); i++ { // Check if the state key tuple matches the start of the block if a[j].StateKeyTuple != a[i].StateKeyTuple { // If the state key tuple is different then we've reached the end of a block of duplicates. // Check if the size of the block is bigger than one. // If the size is one then there was only a single entry with that state key tuple so we don't add it to the result if j+1 != i { // Add the block to the result. result = append(result, a[j:i]...) } // Start a new block for the next state key tuple. j = i } } // Check if the last block with the same state key tuple had more than one event in it. if j+1 != len(a) { result = append(result, a[j:]...) } return result } type stateEntrySorter []types.StateEntry func (s stateEntrySorter) Len() int { return len(s) } func (s stateEntrySorter) Less(i, j int) bool { return s[i].LessThan(s[j]) } func (s stateEntrySorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type stateBlockNIDListMap []types.StateBlockNIDList func (m stateBlockNIDListMap) lookup(stateNID types.StateSnapshotNID) (stateBlockNIDs []types.StateBlockNID, ok bool) { list := []types.StateBlockNIDList(m) i := sort.Search(len(list), func(i int) bool { return list[i].StateSnapshotNID >= stateNID }) if i < len(list) && list[i].StateSnapshotNID == stateNID { ok = true stateBlockNIDs = list[i].StateBlockNIDs } return } type stateEntryListMap []types.StateEntryList func (m stateEntryListMap) lookup(stateBlockNID types.StateBlockNID) (stateEntries []types.StateEntry, ok bool) { list := []types.StateEntryList(m) i := sort.Search(len(list), func(i int) bool { return list[i].StateBlockNID >= stateBlockNID }) if i < len(list) && list[i].StateBlockNID == stateBlockNID { ok = true stateEntries = list[i].StateEntries } return } type stateEntryByStateKeySorter []types.StateEntry func (s stateEntryByStateKeySorter) Len() int { return len(s) } func (s stateEntryByStateKeySorter) Less(i, j int) bool { return s[i].StateKeyTuple.LessThan(s[j].StateKeyTuple) } func (s stateEntryByStateKeySorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type stateNIDSorter []types.StateSnapshotNID func (s stateNIDSorter) Len() int { return len(s) } func (s stateNIDSorter) Less(i, j int) bool { return s[i] < s[j] } func (s stateNIDSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func uniqueStateSnapshotNIDs(nids []types.StateSnapshotNID) []types.StateSnapshotNID { return nids[:util.SortAndUnique(stateNIDSorter(nids))] } type stateBlockNIDSorter []types.StateBlockNID func (s stateBlockNIDSorter) Len() int { return len(s) } func (s stateBlockNIDSorter) Less(i, j int) bool { return s[i] < s[j] } func (s stateBlockNIDSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func uniqueStateBlockNIDs(nids []types.StateBlockNID) []types.StateBlockNID { return nids[:util.SortAndUnique(stateBlockNIDSorter(nids))] } // Map from event type, state key tuple to numeric event ID. // Implemented using binary search on a sorted array. type stateEntryMap []types.StateEntry // lookup an entry in the event map. func (m stateEntryMap) lookup(stateKey types.StateKeyTuple) (eventNID types.EventNID, ok bool) { // Since the list is sorted we can implement this using binary search. // This is faster than using a hash map. // We don't have to worry about pathological cases because the keys are fixed // size and are controlled by us. list := []types.StateEntry(m) i := sort.Search(len(list), func(i int) bool { return !list[i].StateKeyTuple.LessThan(stateKey) }) if i < len(list) && list[i].StateKeyTuple == stateKey { ok = true eventNID = list[i].EventNID } return } // Map from numeric event ID to event. // Implemented using binary search on a sorted array. type eventMap []types.Event // lookup an entry in the event map. func (m eventMap) lookup(eventNID types.EventNID) (event *types.Event, ok bool) { // Since the list is sorted we can implement this using binary search. // This is faster than using a hash map. // We don't have to worry about pathological cases because the keys are fixed // size are controlled by us. list := []types.Event(m) i := sort.Search(len(list), func(i int) bool { return list[i].EventNID >= eventNID }) if i < len(list) && list[i].EventNID == eventNID { ok = true event = &list[i] } return }